Aspects of the Training and Visit System of Agricultural Extension in India
A Comparative Analysis
Gershon Feder
Roger Slade

WORLD BANK STAFF WORKING PAPERS
Number 656
Aspects of the Training and Visit System of Agricultural Extension in India
A Comparative Analysis

Gershon Feder
Roger Slade

The World Bank
Washington, D.C., U.S.A.
This is a working document published informally by the World Bank. To present the results of research with the least possible delay, the typescript has not been prepared in accordance with the procedures appropriate to formal printed texts, and the World Bank accepts no responsibility for errors. The publication is supplied at a token charge to defray part of the cost of manufacture and distribution.

The views and interpretations in this document are those of the author(s) and should not be attributed to the World Bank, to its affiliated organizations, or to any individual acting on their behalf. Any maps used have been prepared solely for the convenience of the readers; the denominations used and the boundaries shown do not imply, on the part of the World Bank and its affiliates, any judgment on the legal status of any territory or any endorsement or acceptance of such boundaries.

The full range of World Bank publications, both free and for sale, is described in the Catalog of Publications: the continuing research program is outlined in Abstracts of Current Studies. Both booklets are updated annually; the most recent edition of each is available without charge from the Publications Sales Unit, Department T, The World Bank, 1818 H Street, N.W., Washington, D.C. 20433, U.S.A., or from the European Office of the Bank, 66 avenue d'Iéna, 75116 Paris, France.

Gershon Feder is an economist with the Agriculture and Rural Development Department of the World Bank; Roger Slade is an economist with the Projects Department of the Bank's South Asia Regional Office.

Library of Congress Cataloging in Publication Data
Feder, Gershon, 1947-
Aspects of the training and visit system of agricultural extension in India.
(World Bank staff working papers ; no. 656)
Bibliography: p.
1. Agricultural extension work--India. 2. Agricultural innovations--India. 3. Farmers--India. I. Slade, Roger, 1941- II. Title. III. Series.
S544.5.I5F38 1984 630'.7'15054 84-15157
The paper utilizes recent farm survey data to assess the performance of the Training and Visit Extension system in one district in the state of Haryana (India) compared to a neighboring district covered by an older extension system. The data show a significantly higher level of village-level extension activity in the area covered by Training and Visit Extension, and this is compatible with the larger number of staff and higher expenditure on extension under this system. The data also suggest that knowledge of improved practices, especially in wheat cultivation, diffused faster in the area covered by T&V extension.
En este trabajo se usan datos obtenidos mediante una encuesta en las fincas para determinar los resultados del sistema de extensión de capacitación y visitas en un distrito del estado de Haryana (India), en comparación con un distrito vecino en que funciona un sistema de extensión más antiguo. Los datos indican que en la región en que existe el sistema de capacitación y visitas las actividades de extensión al nivel de los poblados son mucho más amplias, lo que está en consonancia con el personal más numeroso y los gastos mayores en extensión que caracterizan a este sistema. Los datos también parecen indicar que el conocimiento de prácticas perfeccionadas, especialmente en lo que respecta al cultivo del trigo, se difunde más rápidamente en la zona en que se aplica el sistema de capacitación y visitas.

Le présent document utilise les données d’une récente enquête sur les exploitations agricoles pour comparer les résultats du système de vulgarisation fondé sur la formation et les visites, appliqué dans une circonscription de l’Etat de l’Haryana (Inde), et les résultats obtenus dans une circonscription voisine où est utilisé un système de vulgarisation plus ancien. Ces données indiquent que les activités de vulgarisation, au niveau du village, sont beaucoup plus intenses dans la zone couverte par le système de formation et visites, ce qui justifie les effectifs plus nombreux et les coûts plus élevés du nouveau système. Les informations recueillies suggèrent, d’autre part, que les populations sont plus vite au courant des techniques agricoles améliorées dans la zone où est appliqué le système de formation et visites, particulièrement pour la culture du blé.
Table of Contents

1. Introduction	1
2. The Districts Studied	3
3. Some Characteristics of Farmers in the Study Area	6
4. The Selection and Characteristics of Contact Farmers	9
5. Aspects of Extension Operations	11
6. Aspects of Farmer Knowledge	22
7. Summary and Conclusions	33

Footnotes 35
References 36
1. Introduction

Agricultural extension has a long history in India as in other countries. Since the mid-seventies, however, India has progressively replaced its system of multi-purpose field workers by the Training and Visit System of Agricultural Extension [Benor and Harrison, 1977]. This transition, not yet complete, has aroused widespread interest and spawned a growing body of literature; see for example, [Cernea 1981], [Howell 1982a, 1982b, 1983], [Von Blanckenburg 1982], [Jaiswal 1983], [Singh 1983], [Moore 1983], [Feder and Slade 1984a, 1984b]. Some of these, and other writers, see advantages in this new system of extension whilst others have expressed critical views. The resulting arguments, in the absence of suitable empirical evidence, proceed by anecdote and casual empiricism. Nevertheless, few authors fail to mention the need for objective empirical information [for example, Moore 1983] with which the effects of the training and visit system (hereafter T&V system) can be assessed. This need led, in late 1981, to the initiation of an intensive case study of the impact of T&V extension in the state of Haryana, where the extension system was reorganized in 1979. The study is being undertaken by the authors in collaboration with the Haryana Agricultural University at Hissar, and is designed inter alia to assess the extent to which the introduction of T&V extension in Haryana has accelerated the diffusion of knowledge about improved farming practices and increased farm productivity.
Data were collected through a series of sample surveys, spanning four consecutive crop seasons in two districts in Haryana (Jind and Karnal) and two crop seasons for one district in the neighboring state of Uttar Pradesh (Muzafarnagar). In Jind and Karnal districts two random samples, consisting of nearly equal numbers of contact and non-contact farmers, were chosen. In Muzafarnagar district and because the T&V system does not operate there, the sample comprised non-contact farmers only (see Table 1). Respondents were interviewed twice in each season. The first interview took place roughly at the mid-point of the season and the second shortly after the harvest. Respondents were constantly assured that the surveys were unconnected with the extension system or any other government department.

Table 1: COMPOSITION OF THE SAMPLE IN 1981

<table>
<thead>
<tr>
<th></th>
<th>Haryana</th>
<th>Uttar Pradesh</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jind District</td>
<td>Karnal District</td>
</tr>
<tr>
<td>Contact Farmers</td>
<td>260</td>
<td>175</td>
</tr>
<tr>
<td>Non-Contact Farmers</td>
<td>345</td>
<td>200</td>
</tr>
<tr>
<td>Total</td>
<td>605</td>
<td>375</td>
</tr>
</tbody>
</table>

/a In subsequent parts of this paper, the number of observations records the number of valid responses for the relevant variable obtained from this sample. Also note that the numbers given in this table do not always constitute the denominator for the calculation of proportions, as sample fatigue and a few missed interviews changed the maximum possible sample size in each survey round.

Because the district of Jind is much drier than both Karnal and Muzafarnagar, comparative analysis in this paper is confined to the latter two districts and spans the two growing seasons, Rabi and Kharif of 1982/83, for which comparable data are available. Furthermore, we focus only on the
principal crop in each season -- paddy in the kharif (rainy season) and wheat in the rabi (dry season).

The paper is organized as follows; the next section contains an outline of the study area and descriptions of the two different systems of extension to be found there. In section three, based on characteristics that describe them, groups of farmers in the study area are compared. The following section briefly examines the role and selection of contact farmers in the T&V system. Data on the number and regularity of extension agent's visits to farmers are used in section five to examine the performance of the extension systems. Farmers' stated preferences concerning sources of information are also discussed. Subsequently, in section six, farmers' knowledge about a variety of recommended farming practices is reviewed and a comparative analysis is undertaken of the rates of knowledge diffusion for selected HYV paddy and wheat practices. The paper ends with a short summary and some conclusions.

2. The Districts Studied

Karnal and Muzafarnagar districts are similar in many respects. They lie on opposite banks of the Jamuna river, are flat, have similar light alluvial soils and are connected by a solitary bridge which spans the river some distance to the north. Average annual rainfall in Karnal is 803 mm and in Muzafarnagar 794 mm. Both districts are heavily irrigated: in Karnal 74 percent of the net cropped area is irrigated, the comparable figure for
Muzafarnagar is 84 percent. The two districts are linguistically and ethnically similar. In the Rabi season wheat is the dominant crop in both districts. In the Kharif, however, paddy is the major crop in Karnal, sugarcane being of lesser importance. In Muzafarnagar sugarcane is the preponderant Kharif crop and paddy is of secondary importance.

In the state of Uttar Pradesh, of which Muzafarnagar is the most westerly district, the extension system remains unreformed and is based on a network of village level workers (VLW) administered by the Community Development Programme. These workers are responsible not only for the provision of extension advice but regulate the supply of inputs and credit and provide links with the rural population for several other government agencies. There are some 155 VLW's in the district: one worker for every 5.9 villages. In Karnal the ratio is 4.7. Alternatively, in 1981 there were was one village extension worker (VEW) for every 7,400 members of the rural population in Karnal and in Muzafarnagar one VLW for every 11,500 rural people. These VLW’s are supplemented by staff of the Department of Agriculture who, working mainly under the aegis of a series of special crop programmes, are much concerned with the supply of farm inputs and the administration of specific subsidy and incentive schemes.

The T&V system is a hierarchically organized and time bound method of managing extension and is designed to deliver selected, timely and feasible technology to farmers with strict regularity. The technology is encapsulated in carefully formulated recommendations often termed impact points which extension agents convey to selected contact farmers (about 10 percent of all
farmers) and such other farmers as attend the fortnightly visits or who approach the agent on their own initiative at other times. The system places great emphasis on a professional approach to extension and requires an exclusive devotion to extension work. In principle, all activities related to the physical handling of inputs and credit applications should be strictly avoided. Extension agents are however expected to liaise with input supply agencies and to advise farmers on sources of supply.

In Haryana, of which Karnal is one of twelve districts, the extension system was reformed along T&V lines starting in December 1979. By August 1981, 95 percent of village extension worker (VEW) positions were filled as well as 79 percent of the subject matter specialist positions (technical specialists of intermediate rank). By March 1983 these figures had increased to 99 percent and 88 percent respectively. However, in May 1982 25 percent of agricultural extension officer positions (AEO's) were still vacant and were not filled until April 1983. District Technical Committees, Zonal Workshops, and the State Technical Committee were either not convened or worked erratically until very recently. These bodies, have, inter alia, important functions related to defining and programming technical recommendations. Their prolonged ineffectiveness constituted an important weakness in the extension system throughout the period of study.

There have also been other problems. Between early 1980 and early 1984 there were six changes amongst the three most senior government servants responsible for the T&V system in Haryana and this resulted in periodic and marked fluctuations in the strength of managerial commitment to the reformed
system. There were also widespread and disruptive staff transfers at the AEO and VEW levels during 1982.

In Karnal (and other districts) older VEWs have complained of reduced responsibility consequent on the separation of extension work from other agricultural duties. Some farmers have complained about their inability to obtain inputs through the VEW, supervising officers have been criticized for a lack of attention to field work and both VEW's and more senior officers still devote time to non-extension duties. The links between extension staff and the agricultural university remain weak, researchers continue to be isolated, and VEW training is poorly planned and frequently ineffective. [Sisodia 1983], [Hoepper 1983].

3. Some Characteristics of Farmers in the Study Area

Information on a dozen factors that are likely to influence farmers' receptivity to innovations is summarized in Table 2. These data provide a backdrop for the later comparative analysis between districts and allow the extent of similarities and differences between contact and non-contact farmers to be assessed. Critics of the T&V system frequently argue that contact farmers are chosen from amongst the wealthy and powerful, who then monopolize extension services at the expense of other less privileged farmers [Howell 1982a], [Moore 1983].
Table 2: Kharif 1982: CHARACTERISTICS OF SAMPLE FARMERS

<table>
<thead>
<tr>
<th>Farmer Characteristic</th>
<th>Karnal District (Haryana)</th>
<th>Non-Farm Class a/</th>
<th>Muzafarnagar District (Uttar Pradesh)</th>
<th>All Farmers (Percent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taken Ag. Training Course</td>
<td>Small</td>
<td>6</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Large</td>
<td>12</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>All</td>
<td>10</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Participant in Village Govt.</td>
<td>Small</td>
<td>12</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Large</td>
<td>14</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>All</td>
<td>14</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Has Non-Farm Employment</td>
<td>Small</td>
<td>21</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Large</td>
<td>23</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>All</td>
<td>22</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Owns Tubewell</td>
<td>Small</td>
<td>91</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Large</td>
<td>98</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td></td>
<td>All</td>
<td>95</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Owns Tractor</td>
<td>Small</td>
<td>8</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Large</td>
<td>63</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td></td>
<td>All</td>
<td>42</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>More Than 70 Percent of Land</td>
<td>Small</td>
<td>79</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Large</td>
<td>74</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td></td>
<td>All</td>
<td>76</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>Household Head</td>
<td>Small</td>
<td>50</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Large</td>
<td>42</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>All</td>
<td>46</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Reporting b/ Salinity</td>
<td>Small</td>
<td>21</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Large</td>
<td>11</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>All</td>
<td>15</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Reporting b/ Waterlogging</td>
<td>Small</td>
<td>5</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Large</td>
<td>7</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>All</td>
<td>6</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Reporting a Shortage of Credit</td>
<td>Small</td>
<td>8</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Large</td>
<td>4</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>All</td>
<td>6</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Reporting</td>
<td>Small</td>
<td>10</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Irregular Diesel Supplies</td>
<td>Large</td>
<td>18</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>All</td>
<td>13</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Reporting</td>
<td>Small</td>
<td>59</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Irregular Electricity Supplies</td>
<td>Large</td>
<td>68</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>All</td>
<td>64</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

Number of Observations

<table>
<thead>
<tr>
<th></th>
<th>Small</th>
<th>Large</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small</td>
<td>66</td>
<td>111</td>
<td>177</td>
</tr>
<tr>
<td>Large</td>
<td>88</td>
<td>71</td>
<td>159</td>
</tr>
</tbody>
</table>

a/ Based on owned land. In this and subsequent tables, farmers owning 10 or more acres are defined as large farmers.

b/ Based on responses from paddy growers only. In Muzafarnagar District there were 56 such respondents.
In Karnal, contact farmers are significantly more involved in village government and have participated more frequently in agricultural training courses than non-contact farmers, although the difference in the latter attribute is not statistically significant. Whilst the participation of farmers in agricultural training in Muzaffarnagar is less than for non-contact farmers in Karnal, their involvement in village government appears to be more widespread -- a difference that is statistically significant. Presumably, this reflects a somewhat more diversified social structure in Muzaffarnagar district.

The proportion of farmers who also have non-farm employment, a characteristic that may affect their attitudes to production risk, is significantly greater in Muzaffarnagar than among non-contact farmers in Karnal. The difference between contact and non-contact farmers in Karnal is not statistically significant.

The ownership of tubewells is significantly higher for contact farmers in comparison to non-contact farmers in Karnal although the absolute levels of ownership for both groups are high. Generally, tubewell ownership is more common among large farmers than among small farmers. The ownership pattern of tubewells in Muzaffarnagar is very similar to that of non-contact farmers in Karnal and enhances the validity of comparisons between these groups. In the same way the extent of irrigation is very similar amongst non-contact farmers in Muzaffarnagar and non-contact farmers in Karnal. Table 2 also presents data on the incidence of waterlogging and salinity and
clearly shows, consistent with the higher proportion of irrigated land in the extreme west of Uttar Pradesh, that the incidence of both problems is significantly higher in Muzafarnagar than amongst non-contact farmers in Karnal.

Comparisons of the frequency with which heads of household are found to have no formal education reveal that contact farmers are significantly better educated than non-contact farmers in Karnal but that the difference between farmers in Muzafarnagar and non-contact farmers in Karnal is not significant. Credit is not an overriding constraint for any group of farmers. Problems with power supplies (diesel fuel or electricity) for irrigation facilities are serious in Karnal and in this respect farmers in Muzafarnagar seem to be much better provided.

In general we conclude that while non-contact farmers in Karnal are not identical to farmers in Muzafarnagar, they are comparable as there is no clear dominance of one group over the other with respect to factors likely to influence their attitudes to innovations.

4. The Selection and Characteristics of Contact Farmers

At the bottom of the T&V system hierarchy are the village extension agents, who cover areas typically containing 700-800 farming families, divided into about eight groups. In each group, about 10 percent of the farmers are selected as "contact farmers" by the local VEW who visits each of the eight farmers' groups once every two weeks, on a pre-specified and fixed date. These visits are mostly to contact farmers, but other farmers are expected to participate. Indeed, the T&V method stresses that non-contact
farmers must not be excluded from meetings between the VEW and contact farmers and that they should be made aware of the extension agents' regular visits to the group (or the village) and of their freedom to attend meetings. They should be encouraged to attend visits by extension agents in contact farmers' fields, and their queries should be answered (Benor, personal communication). Indeed, as we show later, non-contact farmers do report significant direct exposure to extension.

Contact farmers are expected to act as opinion leaders. They receive a continuous and regular flow of information from extension agents which they are expected to convey to other farmers. It follows that the way in which they are selected is a matter of considerable importance. While their potential for opinion leadership on matters of crop husbandry is the key criterion, they should not be exceptional in their command of resources lest other farmers fail to imitate them, attributing their achievements to their wealth not to the application of improved practices [Benor and Harrison, 1977], [Benor and Baxter 1984]. Hence a fine balance must be maintained between "representativeness" and potential for opinion leadership. Since the latter is closely related to innovativeness [Kivlin et al., 1971: pp 155–160], there is an obvious trade-off between choosing those farmers who will adopt innovations most speedily and those who are somewhat less suitable (from the point of view of potential for fast adoption), but whose resource position is typical of the majority of farmers and hence, their behavior more readily imitated.
Since each VEW is responsible for the selection of contact farmers in his area personal preferences cannot be totally eliminated, and experience has shown that agents in many extension systems tend to favor the wealthy and influential. Further, the extent to which the principles of contact farmer selection embodied in the T&V credo are applied, will vary according to the extent to which VEW's understand the system and have benefitted from orientation training. Hoepper [1983] has shown that there is considerable variation in the application of selection criteria by VEW's. It is not, therefore, surprising that in some respects contact farmers are representative of the farming community as a whole, while in other ways they are significantly different. Feder and Slade [1984a] demonstrate this point using multivariate logit analysis and show that while the caste composition of two groups of contact and non-contact farmers is almost identical farmers who are wealthier, more educated, more favorably endowed with irrigation facilities and of higher social status than the majority are more frequently selected as contact farmers. They also note, however, that although very small farmers (those owning less than two acres) were underrepresented in the contact farmer group, their share was not negligible – 12 percent compared to 30 percent in the general population.

5. Aspects of Extension Operations

As noted above, T&V extension is a hierarchical and time bound system which requires extension agents to perform their duties in a regular and predictable manner. The essence is a two weekly visit by the VEW to each farmer group in his domain. During these visits, the VEW focuses mainly,
but not exclusively on the contact farmers. As the system becomes established and a regular pattern of visits is built up so an increasing number of non-contact farmers are expected, through normal diffusion, to first become aware of the availability of regular extension advice and second to attend meetings between the VEW and contact farmers.

In any four-week period, under ideal conditions, most contact farmers should report two visits. Such ideal conditions do not obtain in reality for various reasons: an extension agent may be temporarily sick for the whole or part of the reference period, some areas may be temporarily unattended due to unfilled vacancies, some farmers may skip a visit due to their own considerations and some VEW’s may be dilatory. These factors may be summed up as normal friction. Nevertheless, if the system is working well the vast majority of contact farmers should receive two visits in each four-week period. Obviously, the same is not true of non-contact farmers but it might reasonably be expected that a slowly growing number of non-contact farmers will receive some direct advice from extension agents.

Table 3 summarizes the evidence over four seasons in Karnal. By kharif 1981 after about two years of T&V operations about 80 percent of contact farmers received at least one visit during the four weeks studied but only a little more than 60 percent received two visits. Alternatively, about 20 percent did not receive any visits and nearly 40 percent received less than two visits. This is probably more than can be accounted for by normal friction. By Rabi 1982/83 the situation had improved slightly so that 30 percent of contact farmers received less than their scheduled two visits.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Contact Farmers</td>
<td>Non-Contact Farmers</td>
<td>All Farmers</td>
<td>Contact Farmers</td>
<td>Non-Contact Farmers</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No. Observations</td>
<td>Number of Visits</td>
<td>No. Observations</td>
<td>Number of Visits</td>
<td>No. Observations</td>
<td>Number of Visits</td>
<td>Number of Visits</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No.</td>
<td>0</td>
<td>1</td>
<td>2+</td>
<td>No.</td>
<td>0</td>
</tr>
<tr>
<td>Small</td>
<td>63</td>
<td>22</td>
<td>19</td>
<td>59</td>
<td></td>
<td>114</td>
<td>58</td>
</tr>
<tr>
<td>Large</td>
<td>112</td>
<td>17</td>
<td>19</td>
<td>64</td>
<td></td>
<td>85</td>
<td>53</td>
</tr>
<tr>
<td>All</td>
<td>175</td>
<td>19</td>
<td>19</td>
<td>62</td>
<td></td>
<td>199</td>
<td>56</td>
</tr>
<tr>
<td>Small</td>
<td>70</td>
<td>27</td>
<td>32</td>
<td>44</td>
<td></td>
<td>115</td>
<td>99</td>
</tr>
<tr>
<td>Large</td>
<td>110</td>
<td>18</td>
<td>29</td>
<td>53</td>
<td></td>
<td>79</td>
<td>77</td>
</tr>
<tr>
<td>All</td>
<td>180</td>
<td>21</td>
<td>30</td>
<td>49</td>
<td></td>
<td>184</td>
<td>90</td>
</tr>
<tr>
<td>Small</td>
<td>66</td>
<td>33</td>
<td>18</td>
<td>49</td>
<td></td>
<td>88</td>
<td>89</td>
</tr>
<tr>
<td>Large</td>
<td>111</td>
<td>20</td>
<td>25</td>
<td>65</td>
<td></td>
<td>71</td>
<td>83</td>
</tr>
<tr>
<td>All</td>
<td>177</td>
<td>25</td>
<td>16</td>
<td>59</td>
<td></td>
<td>159</td>
<td>86</td>
</tr>
<tr>
<td>Small</td>
<td>59</td>
<td>15</td>
<td>13</td>
<td>72</td>
<td></td>
<td>93</td>
<td>77</td>
</tr>
<tr>
<td>Large</td>
<td>101</td>
<td>10</td>
<td>20</td>
<td>70</td>
<td></td>
<td>73</td>
<td>68</td>
</tr>
<tr>
<td>All</td>
<td>160</td>
<td>13</td>
<td>17</td>
<td>70</td>
<td></td>
<td>166</td>
<td>73</td>
</tr>
</tbody>
</table>

n.a. = not available.
During the intervening two seasons, however, the situation deteriorated substantially and it seems likely that this was a direct reflection of uncertainties that resulted from the changes that took place in senior extension management in Haryana at that time. There is also some evidence [Hoeper 1983] that the extensive transfers of field staff during 1982 disrupted visit schedules. During the kharif 1982 season, VEW visits to contact farmers were significantly biased in favour of the larger farmers but in the other seasons the apparent differences are not statistically significant.

The story for non-contact farmers is much the same, but at lower absolute levels of contact frequency. Although larger non-contact farmers report a higher incidence of interaction with extension staff only in Rabi 1981/82 is the difference statistically significant. What does stand out, however, is that, in comparison to the traditional system of extension operating in Muzafarnagar the T&V system achieves more direct contact with farmers. Comparisons of the figures for Karnal with those of Muzafarnagar show that the proportion of non-contact farmers in Karnal who had direct contact with the extension agent is significantly higher than the comparable proportion in Muzafarnagar. This is compatible with the lower farmer to extension agent ratio in an area covered by the T&V system relative to an area served by traditional, multi-purpose VLW's.

Data about extension visits is also reported in Table 4 but the reference period is extended to the entire season, excluding the four weeks immediately prior to the interview. A season long perspective helps to
eliminate the effects of any special circumstances that may have affected extension activities, or farmers recollection of them, in the month preceding the interview. The data show that during each of the four seasons covered by the surveys, 80 to 90 percent of all contact farmers were visited by their VEW, whilst about 10 percent were not visited at all. VEW’s are however, advised to replace contact farmers whom they find uncooperative or who are deemed unsuitable by other contact farmers. To avoid mutual loss of face (status) they do not formally 'dismiss' contact farmers but merely phase out their visits to them (Baxter personal communication).

The data in Table 4 provide no evidence of farm size bias in agents visits to contact farmers (the reported differences are not statistically significant) but amongst non-contact farmers, there is a consistent significant bias in favor of larger farmers. This, however, does not necessarily reflect a pre-disposition on the part of extension personnel, as non-contact farmers in their dealings with VEWs act primarily on their own initiative. Moreover, the theory of information acquisition predicts that larger farmers will be more inclined to actively seek information because the per-acre cost of obtaining information is lower for them than for smaller farmers [Feder and Slade 1984b]. Table 4 also shows that in Muzafarnagar, farmers' contact with extension agents is significantly less than in Karnal.
Table 4: PROPORTION OF FARMERS VISITED BY VEW DURING SEASON a/

<table>
<thead>
<tr>
<th>Season</th>
<th>Size</th>
<th>Farm No: Observations</th>
<th>Percent Visited</th>
<th>Sample Size</th>
<th>Percent Visited</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kharif</td>
<td>Small</td>
<td>63</td>
<td>80</td>
<td>114</td>
<td>45</td>
</tr>
<tr>
<td>1981</td>
<td>Large</td>
<td>112</td>
<td>86</td>
<td>85</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>All</td>
<td>175</td>
<td>83</td>
<td>199</td>
<td>51</td>
</tr>
<tr>
<td>Rabi</td>
<td>Small</td>
<td>70</td>
<td>83</td>
<td>105</td>
<td>11</td>
</tr>
<tr>
<td>1981/82</td>
<td>Large</td>
<td>110</td>
<td>86</td>
<td>79</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>All</td>
<td>180</td>
<td>85</td>
<td>184</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kharif</td>
<td>Small</td>
<td>66</td>
<td>86</td>
<td>88</td>
<td>31</td>
</tr>
<tr>
<td>1982</td>
<td>Large</td>
<td>111</td>
<td>93</td>
<td>71</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>All</td>
<td>177</td>
<td>91</td>
<td>159</td>
<td>38</td>
</tr>
<tr>
<td>Rabi</td>
<td>Small</td>
<td>59</td>
<td>81</td>
<td>93</td>
<td>20</td>
</tr>
<tr>
<td>1981/82</td>
<td>Large</td>
<td>101</td>
<td>89</td>
<td>73</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>All</td>
<td>160</td>
<td>86</td>
<td>166</td>
<td>26</td>
</tr>
</tbody>
</table>

n.a. = not available.

a/ Excluding the four weeks immediately before the interview. Only respondents who had received at least one visit from the VEW during the month before the interview were questioned.
The data in Table 5 record the extent to which farmers verify that extension visits take place on the appointed day and show that three-quarters of all contact farmers who have been visited during the season report visits to be regular and that a quarter report the reverse. In short, although the T&V system in the study area is not without flaws, it does reach the majority of contact farmers regularly and a substantial proportion of non-contact farmers less regularly. Furthermore, the data do not support the contention that T&V has atrophied leaving an empty structure and no change in extension operations [Jaiswal 1983]. On the contrary, even in unsettled times (1982) it appears that the mechanics of T&V operations, although sub-optimal, are still better than those of the traditional system. This of course, is as it should be given the greater number of staff employed.

Moore [1983], Jaiswal [1983] and other commentators have claimed, for many areas in India covered by the T&V system, that farmers perceive little benefit in the reformed system, that VEW’s are not known by their clients, that contact farmers fail to pass on information to others and may not even know that they are contact farmers. The data, reported below, for the study area in Haryana, do not support these contentions.

Out of an original sample of 192 contact farmers selected at random from the extension lists in Karnal district 175 turned out, on their own admission, to be contact farmers and most of the remainder claimed to have been contact farmers in the recent past.
Table 5: SEASONAL REGULARITY OF VEW VISITS AMONGST FARMERS RECEIVING A VISIT IN THE FOUR WEEKS PRIOR TO INTERVIEW a/

<table>
<thead>
<tr>
<th>Season</th>
<th>Farm Size</th>
<th>Karnal District, Haryana</th>
<th>Muzafarnagar District U.P.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Contact Farmers</td>
<td>Non-Contact Farmers</td>
<td>All Farmers</td>
</tr>
<tr>
<td></td>
<td>No. Observations b/</td>
<td>Percent Visited Regularly</td>
<td>No. Observations b/ Regularly</td>
</tr>
<tr>
<td>Kharif</td>
<td>Small</td>
<td>49</td>
<td>59</td>
</tr>
<tr>
<td>1981</td>
<td>Large</td>
<td>93</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>All</td>
<td>142</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td></td>
<td>n.a.</td>
<td></td>
</tr>
<tr>
<td>Rabi</td>
<td>Small</td>
<td>51</td>
<td>71</td>
</tr>
<tr>
<td>1981/82</td>
<td>Large</td>
<td>91</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>All</td>
<td>142</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td></td>
<td>n.a.</td>
<td></td>
</tr>
<tr>
<td>Kharif</td>
<td>Small</td>
<td>44</td>
<td>73</td>
</tr>
<tr>
<td>1982</td>
<td>Large</td>
<td>89</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>All</td>
<td>133</td>
<td>81</td>
</tr>
<tr>
<td>Rabi</td>
<td>Small</td>
<td>50</td>
<td>82</td>
</tr>
<tr>
<td>1981/82</td>
<td>Large</td>
<td>90</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>All</td>
<td>140</td>
<td>75</td>
</tr>
</tbody>
</table>

n.a. = not available.

a/ Regularity is defined as always receiving a visit on the same day of the week within each fortnight.

b/ Only respondents who received at least one visit during the four weeks prior to interview were questioned.
All farmers in the sample were asked if they had observed changes in the style of the extension system during the past few seasons as compared to several years ago. The results are recorded in Table 6. Predictably, no change was perceived in Muzafarnagar as no change took place. In Karnal almost all contact farmers were aware of a change in extension operations and they perceived the change to be beneficial. Amongst non-contact farmers less than half were similarly aware although the majority of those who noticed a change held positive opinions about it. Farmers were asked these questions in the kharif season of 1982 when, as noted above, field operations were unsettled. Nevertheless, awareness of the change amongst non-contact farmers, particularly small non-contact farmers is low and suggests that efforts to publicize the availability of extension advice have been unsuccessful.

Almost all contact farmers, and about half of the non-contact farmers know the VEW that visits their group (Table 7). The comparable proportion for Muzafarnagar is, however, a little more than one-tenth. Similarly, 60 percent of non-contact farmers reported knowing at least one contact farmer in their area.

Whilst it is not incumbent on contact farmers to pass on the knowledge gained from extension agents they are expected to do so. Relevant findings from the survey are reported in Table 8. It is clear that more than half of all contact farmers claimed to have discussed extension advice with other farmers, whilst more than 30 percent of those non-contact farmers
Table 6: KHARIF 1982: FARMERS' AWARENESS OF CHANGES IN EXTENSION OPERATIONS IN COMPARISON WITH PRE-1979 SYSTEM

<table>
<thead>
<tr>
<th>Response a/</th>
<th>Karnal District, Haryana</th>
<th>Muzafarnagar District, Uttar Pradesh</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Contact Farmers</td>
<td>Non-Contact Farmers</td>
</tr>
<tr>
<td></td>
<td>Small (N=59)</td>
<td>Large (N=101)</td>
</tr>
<tr>
<td>1. Not aware of change</td>
<td>5 2 3</td>
<td>67 48 38</td>
</tr>
<tr>
<td>2. Extension visits more frequent and regular</td>
<td>37 18 25</td>
<td>3 3 3</td>
</tr>
<tr>
<td>3. Extension delivers more useful and timely information</td>
<td>59 77 71</td>
<td>28 45 36</td>
</tr>
<tr>
<td>4. Extension visits are less frequent and less regular</td>
<td>12 11 11</td>
<td>2 7 4</td>
</tr>
<tr>
<td>5. Information is not as useful as before</td>
<td>0 0 0</td>
<td>0 0 0</td>
</tr>
</tbody>
</table>

\(a\) Responses 2-4 are not mutually exclusive.
Table 7: RABI 1982/83: KNOWLEDGE OF VEW BY FARMERS

<table>
<thead>
<tr>
<th>Farm Size</th>
<th>Karnal District, Haryana</th>
<th>Muzafarnagar District U.P.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Contact Farmers</td>
<td>Non-Contact Farmers</td>
</tr>
<tr>
<td></td>
<td>No. Observations</td>
<td>Percent Knowing VEW</td>
</tr>
<tr>
<td>Small</td>
<td>59</td>
<td>97</td>
</tr>
<tr>
<td>Large</td>
<td>101</td>
<td>98</td>
</tr>
<tr>
<td>All</td>
<td>160</td>
<td>98</td>
</tr>
</tbody>
</table>

a/ In this context 'Knowledge' was defined as knowing the name of the VEW or being able to recognize him.
who had direct contact with VEW's also claimed to have passed on information obtained from extension agents.

Table 8: KHARIF 1982: FARMERS WHO DISCUSSED EXTENSION ADVICE WITH OTHERS

<table>
<thead>
<tr>
<th>Farmer Type</th>
<th>Karnal District-Haryana</th>
<th>Muzafarnagar District - U. P.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of Observations</td>
<td>Discussed with Others (Percent)</td>
</tr>
<tr>
<td>Contact</td>
<td>149</td>
<td>52</td>
</tr>
<tr>
<td>Non-contact</td>
<td>52</td>
<td>37</td>
</tr>
</tbody>
</table>

Further evidence of farmer's opinions about extension is provided in Table 9 which reports farmers' rankings of their most important sources of information. Not surprisingly, perhaps, individual advice from the VEW was the first choice for the vast majority of contact farmers. Of greater interest is that nearly 20 percent of non-contact farmers in Karnal were of the same opinion compared to 2 percent in Muzafarnagar. Advice from other farmers scored highly in Karnal but was the dominant source in Muzafarnagar, perhaps reflecting the absence of an effective alternative. Of the remaining sources only radio programs won a noticeable number of first preferences. Indeed, it would appear that radio and, to a lesser extent, input salesmen and distributors are regarded as subsidiary rather than primary sources of information by farmers in both districts.

6. Aspects of Farmer Knowledge

An increase in farmers knowledge about crops and cropping practices is the intended direct product of extension. Obviously, those who seek to
Table 9: RABI 1982/83: Farmers Sources of Information by Ranked Preference a.

<table>
<thead>
<tr>
<th>Source of Information</th>
<th>Ranked Preference</th>
<th>Karnal District, Haryana</th>
<th>Muzafarnagar District, U.P.</th>
<th>All Farmers: Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Contact Farmers</td>
<td>Non-Contact Farmers</td>
<td></td>
</tr>
<tr>
<td>Individual advice from VEW</td>
<td>First</td>
<td>87</td>
<td>19</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Second</td>
<td>1</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Third</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Advice from contact farmer</td>
<td>First</td>
<td>1</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Second</td>
<td>3</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Third</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Advice from other farmers b/</td>
<td>First</td>
<td>9</td>
<td>47</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>Second</td>
<td>36</td>
<td>33</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Third</td>
<td>21</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>Demonstration/field days</td>
<td>First</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Second</td>
<td>10</td>
<td>2</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Third</td>
<td>3</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Agricultural radio programs</td>
<td>First</td>
<td>1</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Second</td>
<td>28</td>
<td>27</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Third</td>
<td>39</td>
<td>34</td>
<td>32</td>
</tr>
<tr>
<td>Salesmen and agency officials</td>
<td>First</td>
<td>0</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Second</td>
<td>15</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Third</td>
<td>18</td>
<td>21</td>
<td>17</td>
</tr>
<tr>
<td>Other c/</td>
<td>First</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Second</td>
<td>6</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Third</td>
<td>19</td>
<td>27</td>
<td>39</td>
</tr>
</tbody>
</table>

a/ For each source of information farmers were asked to say whether they regarded it as a primary, secondary or tertiary source.

b/ Other farmers could in fact be contact farmers. Not all contact farmers are known as such to the non-contact farmers.

c/ Includes group meetings, journals and other publications, and research personnel.
improve extension systems hope that additional knowledge will lead to the adoption of improved husbandry by cultivators and will ultimately be translated into increased agricultural productivity. Adoption and any resulting changes in output are, however, only indirectly affected by extension and the disentangling of the direct and indirect effects from other contributing factors is a complex task which we have, for the time being, chosen to eschew. Instead we concentrate on comparing levels of knowledge among the different groups of farmers. This has the advantage of avoiding issues such as constrained input supplies and credit availability which may affect adoption and productivity in a particular season. Such factors should not, however, affect the acquisition of knowledge. We confine our comparative analysis to data drawn from the survey in Karnal and Muzafarnagar during the Kharif and Rabi seasons of 1982/83.

The data in Table 9 show farmers preferences by information source and demonstrate that farmers acquire their knowledge from several sources amongst which the extension service and other farmers are the most important. Moreover, we tested farmers' sources of knowledge for a wide range of specific practices and found that for most practices not involving specialized technical knowledge or major expense, contact farmers, under the T&V system, learn mostly from the extension service whilst non-contact farmers learn mostly from other farmers, including contact farmers. With regard to practices involving specialized technical knowledge the picture was roughly reversed. For such practices all farmers tend to learn from knowledgeable primary sources, such as extension agents or other informed persons. This
apparently regular pattern suggests that the diffusion of knowledge regarding
the more demanding practices is likely to be much faster in an area such as
Karnal which has ample extension staff than in a less well endowed area such
as Muzafarnagar.

During the sample surveys farmers were also questioned on their
knowledge of specific practices and on the time when they first learned about
them. Knowledge is difficult to measure without conducting a thorough
examination of a respondents understanding of all aspects of a given recom-
mandation. For some practices this was possible but for others detailed
testing was beyond the time and resources available. In such cases, however,
it was possible to establish the farmers awareness of the practice. Such
awareness is an important indication of knowledge because, by definition a
farmer who is unaware of a practice cannot be familiar with its detail. From
the resulting data the levels of knowledge in 1978, the year before T&V
extension was introduced in Haryana, and 1982, four years later, have been
calculated. To increase the validity of comparisons between Karnal and
Muzafarnagar contact farmers in Karnal have been excluded from the analysis
because they receive a disproportionate amount of direct extension advice and
may also be different in other ways. Thus the results reported in Tables 10
and 11 are, for Karnal, based only on responses from non-contact farmers.

The direct comparison between Karnal and Muzafarnagar of the present
levels of knowledge about a practice is clearly an unsound procedure because
the initial or starting level of knowledge may differ for random or histori-
cal reasons. The proper procedure would be to compare the time paths of
knowledge diffusion by superimposing, for each practice in turn, the time path from the area with T&V extension on the corresponding time path from the area with traditional extension. If the former path lies above the latter it may be inferred that the more intensive extension effort provided by T&V increases the rate of knowledge diffusion.

However, with only two observations we have no clue as to the shape of the growth curve which passes through them. To assume that the growth path is linear is clearly wrong as it is widely believed that processes of diffusion follow a logistic curve or some other non-linear function of time. The growth path for a logistic curve can be calculated from the following equation;

\[
K_t = \frac{1}{1 + e^{a - \beta t}}
\]

(1)

where \(K_t \) is the proportion of knowledgeable farmers, \(t \) is time and \(a \) and \(\beta \) are parameters.

Given, however, that we cannot be sure that a logistic curve will accurately reflect the growth path of knowledge for all practices we postulate that the growth path might alternatively be approximated by the following negative exponential function;

\[
K_t = 1 - (1 - K_0) \cdot e^{-\gamma t}
\]

(2)

where \(K_t \) is again the proportion of knowledgeable farmers, \(t \) is time and \(\gamma \) a parameter.
Equation (2) represents a curve with a monotonically decreasing rate of growth and may be a good approximation where the initial or base observation is 50 percent or more, and therefore, above the inflection point in equation (1). Figure 1 below describes the slope of both curves.

![Figure 1. Logistic (a) and Negative Exponential (b) Curves](image)

The application of equations (1) or (2) to our data, although requiring strong implicit assumptions (the recorded rates of knowledge are, after all, estimates based on a sample of observations) does allow useful inferences to be made about the diffusion paths. And, it can be shown that the larger are the parameters \(\beta \) or \(\gamma \) the higher is the diffusion path (for any given initial level of knowledge) and hence the faster will a saturation level of knowledge (say 99 percent) be achieved. Now, the parameters of the functions derived from the observations for Muzafarnagar can be interpreted as the path that would have applied to Karnal if the T&V system had not been introduced. And, given that the farmers in the samples from the two districts are quite similar in most relevant respects except of course, for the extension system servicing them, we may interpret higher values for \(\beta \) or \(\gamma \) in
Karnal as a reflection of the contribution made by intensive extension to faster diffusion of knowledge. This procedure has the additional advantage of circumventing the problem posed by different initial levels of knowledge for the two districts.

To calculate the values of the parameters β and γ we re-write equations (1) and (2) as follows:

\[
\frac{\ln \frac{K_t}{1 - K_t} - \ln \frac{K_0}{1 - K_0}}{t} = \beta \quad (1a)
\]

\[
\frac{\ln (1 - K_0) - \ln (1 - K_t)}{t} = \gamma \quad (2a)
\]

where K_0 represents the proportion of knowledgeable farmers in the initial time period (1978).

The calculated values of β and γ are reported in Tables 10 and 11 for each practice in each district except in two cases. The first where the initial observation was zero and the second where the terminal observation was 100 percent. In such cases the formulae cannot be applied.

Of the ten HYV paddy practices (Table 10) only three practices in Karnal proved to have clearly superior estimated exponents in comparison with those for Muzafarnagar (practices 2, 7 and 9). Three other paddy practices (1, 4 and 10) show superior exponents for equation (2) but not for equation
Table 10: Kharif 1982, Parameters of Knowledge Diffusion Curves for Recommended HYV Paddy Practices Amongst Non-Contact Farmers in Karnal and All Farmers in Muzafarnagar

<table>
<thead>
<tr>
<th>Practice</th>
<th>Karnal District, Haryana</th>
<th>Muzafarnagar District, Uttar Pradesh</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Percentage Knowledgeable</td>
<td>Parameter (N=138) a/</td>
</tr>
<tr>
<td>1. Best Spacing</td>
<td>58</td>
<td>81</td>
</tr>
<tr>
<td>2. Number of Seedlings per Station</td>
<td>54</td>
<td>97</td>
</tr>
<tr>
<td>3. Chemical Treatment of Seed</td>
<td>23</td>
<td>29</td>
</tr>
<tr>
<td>5. Salt Treatment of Seed</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>6. Method of Nitrogen Application</td>
<td>62</td>
<td>78</td>
</tr>
<tr>
<td>7. Utility of Pesticides</td>
<td>22</td>
<td>41</td>
</tr>
<tr>
<td>8. Utility of Phosphate</td>
<td>51</td>
<td>73</td>
</tr>
<tr>
<td>10. Utility of Zinc Sulphate</td>
<td>49</td>
<td>75</td>
</tr>
</tbody>
</table>

Note: The asterisk (*) signifies what the parameter for Karnal is higher than the corresponding value for Muzafarnagar. n.a. = not applicable

a/ All respondents actually grew HYV Paddy.
Additionally, one other practice (knowledge of chemical treatment of seed) is also clearly superior as the 1978 value in Muzafarnagar was zero and had only reached 2 percent by 1982 while in Karnal the level of knowledge increased by 6 percent. For the remaining two paddy practices (5 and 6) the rate of growth in knowledge is superior in Muzafarnagar. This analysis suggests that for HYV paddy practices the growth in farmer knowledge in Karnal under the T&V system is not universally better than in Muzafarnagar. It is noteworthy, however, that of the three practices in Karnal that have superior knowledge diffusion rates two are cash demanding practices with a significant technical content. We have argued earlier that these are the practices which farmers most commonly learn directly from extension agents, and these results are consistent with that argument.

Turning to the levels of farmer knowledge about practices for HYV wheat, Table 11 shows that the estimated exponents, irrespective of the functional form, are superior in Karnal for all nine practices for which they can be estimated. The exception is the seeding rate for late sown varieties of wheat, which is known by all sampled farmers in Muzafarnagar. This is not surprising as the late sowing of wheat is much more common in Muzafarnagar than in Karnal, consequent on the prevalence of a sugarcane — wheat rotation in the former district.

These are interesting results but they are not free of caveats. First, they are based on results from sample surveys and all such surveys have a margin of error no matter how small. Second, some of the differences
Table 11: RABI 1982/83, PARAMETERS OF KNOWLEDGE DIFFUSION CURVES FOR RECOMMENDED HYV WHEAT PRACTICES AMONGST NON-CONTACT FARMERS IN KARNAL AND ALL FARMERS IN MUZAFARNAGAR

<table>
<thead>
<tr>
<th>Practice</th>
<th>Karnal District, Haryana</th>
<th>Muzafarnagar District, Uttar Pradesh</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Percentage</td>
<td>Parameter</td>
</tr>
<tr>
<td></td>
<td>Knowledgeable (N=166) a/</td>
<td>(N=92) a/</td>
</tr>
<tr>
<td>1. Varieties for Late Sowing</td>
<td>63 94 0.5500* 0.4548*</td>
<td>84 95 0.3215 0.2908</td>
</tr>
<tr>
<td>2. Seeding Rate Late Sown Varieties</td>
<td>28 47 0.2060 0.0766</td>
<td>89 100 n.a. n.a.</td>
</tr>
<tr>
<td>3. Seeding Rate Normally Sown Varieties</td>
<td>55 87 0.4200* 0.3100*</td>
<td>28 30 0.0243 0.0070</td>
</tr>
<tr>
<td>4. Correct Spacing</td>
<td>42 71 0.3045* 0.1730*</td>
<td>77 80 0.0445 0.0349</td>
</tr>
<tr>
<td>5. Chemical Treatment Against Fungi</td>
<td>2 10 0.4200* 0.0212*</td>
<td>10 14 0.0900 0.0113</td>
</tr>
<tr>
<td>6. Chemical Treatment Against Termites</td>
<td>3 13 0.3938* 0.0272*</td>
<td>8 9 0.0320 0.0027</td>
</tr>
<tr>
<td>7. Method of Nitrogen Application</td>
<td>46 82 0.4190* 0.2746*</td>
<td>66 71 0.0580 0.0398</td>
</tr>
<tr>
<td>8. Utility of Phosphate</td>
<td>56 97 0.8087* 0.6714*</td>
<td>78 87 1.588 1.315</td>
</tr>
<tr>
<td>9. Utility of Potash</td>
<td>50 72 0.2360* 0.1449*</td>
<td>59 65 0.0637 0.0396</td>
</tr>
<tr>
<td>10. Utility of Zinc Sulphate</td>
<td>31 60 0.3010* 0.1363*</td>
<td>2 5 0.2375 0.0077</td>
</tr>
</tbody>
</table>

Note: The asterisk (*) signifies that the parameter for Karnal is higher than the corresponding value for Muzafarnagar.

n.a. = not applicable

a/ All respondents actually grew HYV wheat.
in the estimated values for β and γ are very small and may in fact be masked by the implicit error term. Third, even though knowledge about a practice has increased, this says nothing about the extent to which the practice is either useful or profitable to those who have learned it. Consequently, these results per se do not allow us to determine whether any gains in agricultural productivity result from the observed increases in knowledge, or whether such gains outweigh the incremental costs of T&V extension.

Nevertheless the results suggest that T&V extension in Karnal, when compared to the traditional system in Muzafarnagar has led to a noticeable increase in the rate of knowledge diffusion for almost all recommended practices for HYV wheat and several important practices for HYV paddy. Such results are consistent with the significantly higher level of extension activity prevailing in Karnal compared to Muzafarnagar. They are also consistent with other survey findings (not reported) that show (for nine of ten paddy practices and eight of ten wheat practices) the rates of knowledge diffusion amongst contact farmers to be higher than among non-contact farmers (when measured by the parameters of equation (1)). As observed in preceding sections, contact farmers have a greater degree of direct interaction with extension agents and should, ceteris paribus, have higher knowledge diffusion rates. Recall, however, that contact farmers are not necessarily representative of the farming community, and that their higher rates of knowledge may be the result of other attributes.
7. **Summary and Conclusions**

Recognizing the importance of providing any discussion of the strengths and weaknesses of the T&V system of agricultural extension, relative to other systems, with firm empirical foundations we have drawn extensively on evidence derived from recent sample surveys of farmers in India. Data from these surveys, which were undertaken in two contiguous, climatically and ethnically similar districts show that the farmers in these two areas are very similar with respect to several factors likely to influence their attitudes to innovations. One of these districts (Karnal, Haryana) is covered by the T&V system of extension whilst the other (Muzafarnagar, Uttar Pradesh) is covered by an earlier system of extension similar to that which operated in Haryana until 1979.

In Karnal we show that contact farmers, the principal target of the T&V system, are unlikely to be fully representative of their local farming community (in particular, larger farmers are more than proportionately represented), but that they may still be valuable as opinion leaders. Despite several managerial changes and extensive field staff transfers during the period of study the evidence suggests that the majority of contact farmers are visited regularly by extension agents (VEW's) and that substantial numbers of non-contact farmers are also reached directly by the VEW's. The level of extension exposure in Muzafarnagar is significantly lower. It appears that most contact farmers are aware of their role, know their VEW, and perceive the T&V system to be an improvement over its predecessor. However, non-contact farmers, and particularly smaller farmers, are much less
aware of the change in extension that has taken place in Haryana, although amongst those that are, they too perceive the change to be beneficial. There is no strong evidence that extension agents' visits are systematically biased in favor of the largest, or wealthiest contact farmers. These findings contradict claims that the T&V system, despite the increased deployment of staff and resources, is operationally ineffective and seriously biased in favor of the rich and influential.

A detailed examination of farmers knowledge of a series of recommended practices for HYV wheat and paddy showed, not only a regular pattern in the way farmers acquire information, but that the rates of knowledge diffusion in Karnal, for all wheat practices and for some paddy practices examined, are faster than the comparable rates in Muzafarnagar. These findings suggest that the T&V extension system in Karnal is more successful in delivering information to farmers than the traditional system that operates in Muzafarnagar. Although this may be viewed as an encouraging sign, it must be emphasised that the T&V system deploys more resources than the old system and hence should be more effective. Moreover, the demonstrated increases in the effectiveness of information delivery and thus farmer knowledge, although an important first step in understanding the effects of the T&V system, tell us little about the relevance of the technology being extended, its profitability at the farm level or whether any resulting gains in farm productivity are commensurate with the incremental costs. These questions remain as worthy subjects for future research.
Footnotes

1/ The ratios pertain to village level staff. The number of higher level extension staff under the T&V system is significantly higher than under the traditional system.

2/ In a district VEWs are supervised by AEOs who are, in turn responsible to sub-divisional agricultural extension officers. The latter report to the senior agricultural officer in the district, normally a Deputy Director of Agriculture. It follows that in the absence of AEO's VEW's are effectively unsupervised.

3/ The statistical test used here and in other sections of the paper is based on the large sample normality of the test statistic $Z = \frac{p_1 - p_2}{\sqrt{\gamma N_1 (1 - \gamma) [(1/N_1) + (1/N_2)]}}$ where p_1 is the proportion of farmers with a certain characteristic within sample i, N_i are the sample sizes, and γ is the proportion of farmers possessing the characteristic under investigation within the population.

4/ Additionally, in the survey a small number of contact farmers may have reported a single visit because they were interviewed shortly before their scheduled visit day.

5/ By that time over 95 percent of VEW's were in position.

6/ All practices examined are included in the 'packages of recommendations' that the extension systems in Karnal and Muzafarnagar are propagating.

7/ An attempt to construct a continuous time profile of knowledge diffusion was unsuccessful as many farmers were unable to recall precisely the year when they first learned of certain practices. They were, however, able to say whether they had learned more or less than four years ago.
References

6. , 1984b, "The Acquisition of Information and the Adoption of New Technology", American Journal of Agricultural Economics. (Forthcoming)

World Bank Publications of Related Interest

Adoption of Agricultural Innovations in Developing Countries: A Survey
Gershon Feder, Richard Just, and David Silberman

Agrarian Reform as Unfinished Business—the Selected Papers of Wolf Ladejinsky
Louis J. Walinsky, editor

Agrarian Reforms in Developing Rural Economies Characterized by Interlinked Credit and Tenancy Markets
Avishay Braverman and T.N. Srinivasan
Stock No. WP-0433. $3.

Agricultural Credit
Outlines agricultural credit practices and problems, programs, and policies in developing countries and discusses their implications for World Bank operations.
Stock No. BK 9039 (English), BK 9052 (French), BK 9053 (Spanish). $5 paperback.

The Agricultural Development Experience of Algeria, Morocco, and Tunisia: A Comparison of Strategies for Growth
Kevin M. Cleaver
Compares agricultural experience of Algeria, Morocco, and Tunisia. Provides insights into the importance of food and agriculture for development, and determinants of agricultural growth.

The Agricultural Economy of Northeast Brazil
Gary P. Kutcher and Pasquale L. Scandizzo
This study, based on an agricultural survey of 8,000 farms, assesses the extent and root causes of pervasive rural poverty in northeast Brazil. The authors review a number of policy and project options; they conclude that courageous land reform is the only effective means of dealing with the problem.

Agricultural Extension: The Training and Visit System
Daniel Benor, James Q. Harrison, and Michael Baxter
Contains guidelines for reform of agricultural extension services along the lines of the training and visit system. The central objective—making the most efficient use of resources available to governments and farmers—is achieved through encouraging and soliciting feedback from farmers to research workers through extension personnel who visit and advise farmers on a regular, fixed schedule, thus helping research to solve actual production constraints faced by the farmer. Explains the complex relationships between training and visit extension and draws attention to the range of considerations that are important to implementing the system.
1984. 95 pages.

Agricultural Land Settlement
Theodore J. Goering, coordinatort
Examine selected issues related to World Bank's lending for land settlement and gives estimates of the global rate of settlement in the world's ultimate potentially arable land.
Stock Nos. BK 9054 (English), BK 9055 (French), BK 9056 (Spanish). $5 paperback.

Agricultural Price Management in Egypt
William Cuddihy
Stock No. WP-0388. $5.
Agricultural Price Policies and the Developing Countries
George Tolley, Vinod Thomas, and Chung Ming Wong

This book first considers price policies in Korea, Bangladesh, Thailand, and Venezuela, bringing out the consequences for government cost and revenue, farm income, and producer and consumer welfare. Other effects, including those on agricultural diversification, inflation, economic growth, and the balance of payments are also discussed. The second part of the book provides a methodology for estimating these effects in any country. Operational tools for measuring the effects on producers, consumers, and government are developed and applied.

NEW

Agricultural Prices in China
Nicholas R. Lardy

Analyzes recent adjustments to China’s agricultural pricing systems and its effects on urban consumers and overall production patterns. Defines price ratios from key inputs and outputs and examines price/cost relations in view of the institutional setting for price policy.

Agricultural Research

Points out that developing countries must invest more in agricultural research if they are to meet the needs of their growing populations. Notes that studies in Brazil, India, Japan, Mexico, and the United States show that agricultural research yields a rate of return that is more than two to three times greater than returns from most alternative investments and cites some of the successes of the high-yielding varieties of rice and wheat that were developed in the mid-1960s. Discusses the World Bank’s plans to expand its agricultural research and extension, particularly for the production of food and other commodities that are of importance to low-income consumers, small farmers, and resource poor areas.

Stock Nos. BK 9074 (English), BK 0160 (French), BK 0161 (Spanish). $5 paperback.

Agroindustrial Project Analysis
James E. Austin

Provides and illustrates a framework for analyzing and designing agro-industrial projects.

NEW

Alternative Agricultural Pricing Policies in the Republic of Korea: Their Implications for Government Deficits, Income Distribution, and Balance of Payments
Avishay Braverman, Choong Yong Ahn, Jeffrey S. Hammer

Develops a two-sector multimarket model to evaluate agricultural pricing policies, replacing insufficient standard operational methods. Measures the impact of alternative pricing policies on production and consumption of rice and barley, real income distribution, import levels of rice, self-sufficiency in rice, and public budget. Provides a valuable synthesis of the work that has been done to date on agricultural household models. Helps economists evaluate the impact of alternative pricing policies aimed at reducing deficits. Based on the experience of the Grain Management Fund and the Fertilizer Fund in Korea.

Argentine: Country Case Study of Agricultural Prices, Taxes, and Subsidies
Lucio G. Reca

Stock No. WP-0386. $3.

The Book of CHAC: Programming Studies for Mexican Agricultural Policy
Edited by Roger D. Norton and Leopoldo Solis M.

The principal tool of analysis is the sector model CHAC, named after the Mayan rain god. This model can be used throughout the sector to cover short-cycle crops, their inputs, and their markets. It can also be broken down into submodels for particular localities if more detailed analysis is required. The model helps planners weigh the costs among policy goals, which can vary from region to region.

This volume reports the experience of using the CHAC model and also presents purely methodological material.

The Johns Hopkins University Press. 1981. 624 pages (including maps, bibliographies, index).

Building National Capacity to Develop Water Users' Associations: Experience from the Philippines
Frances F. Korten
Staff Working Paper No. 528. 1982. v + 69 pages (including references).

Bureaucratic Politics and Incentives in the Management of Rural Development
Richard Heaver
Analyzes management problems in implementing rural development from a bureaucratic political standpoint. Emphasizes the need to take account of informal interests in managing programs. Suggests possible methods for assessing incentives.

NEW

The Common Agricultural Policy of the European Community: A Blessing or a Curse for Developing Countries?
Ulrich Koester and Malcolm D. Bale
Examines the importance of the European Community (EC) in global agricultural trade. Points out that the EC is the leading importer of agricultural goods and is the dominant exporter of a number of agricultural products. Emphasizes that policymakers in developing countries must understand the implications of the EC's common Agricultural Policy. Spells out how this policy operates and categorizes important commodities.
Stock No. WP 0630. $3.

The Design of Organizations for Rural Development Projects: A Progress Report
William E. Smith, Francis J. Lethem, and Ben A. Thoolen
Stock Nos. WP 0375 (English), BK 9241 (French). $3.

Prices subject to change without notice and may vary by country.

The Design of Rural Development: Lessons from Africa
Una Lele
Analyzes new ways of designing rural development projects to reach large numbers of low-income subsistence populations. The third paperback printing contains a new chapter by the author updating her findings.

Economic Analysis of Agricultural Projects
Second edition, completely revised and expanded
J. Price Gittinger
Sets out a careful and practical methodology for analyzing agricultural development projects and for using these analyses to compare proposed investments. It covers what constitutes a "project," what must be considered to identify possible agricultural projects, the life cycle of a project, the strengths and pitfalls of project analysis, and the calculations required to obtain financial and economic project accounts. The methodology reflects the best of contemporary practice in government agencies and international development institutions concerned with investing in agriculture and is accessible to a broad readership of agricultural planners, engineers, and analysts. This revision adds a wealth of recent project data; expanded treatment of farm budgets and the efficiency prices ther. The third paperback printing contains a new chapter by the author updating her findings.
EDI Series in Economic Development

Forestry
Graham Donaldson, coordinating author
Examines the significance of forests in economic development and concludes that the World Bank should greatly increase its role in forestry development both as a lender and adviser to governments.
Stock Nos. BK 9063 (English), BK 9064 (French), BKL 9065 (Spanish). $5 paperback.

Economic Aspects and Policy Issues in Groundwater Development
Ian Carruthers and Roy Stoner
Stock No. WP 0496. $5.

Economic Return to Investment in Irrigation in India
Leslie A. Abbie, James Q. Harrison, and John W. Wall

Farm Budgets: From Farm Income Analysis to Agricultural Project Analysis
Maxwell L. Brown
Clarifies the relation between simple farm income analysis and the broader field of agricultural project analysis and emphasizes the more practical aspects of project preparation. Gives guidance to those responsible for planning in agriculture.
EDI Series in Economic Development

Fishery
Highlights the importance of fisheries to the economies of developing countries and recommends that the World Bank provide assistance to those countries that have the fishery resources and are willing to develop them further.

Prices subject to change without notice and may vary by country.
Forestry Terms—Terminologie forestière
English—French; Francais—Anglais.

Presents terminology related to forestry development and reforestation control in arid and semiarid lands. Since fuel-wood problems and desertification have become serious, particularly in Western Africa, the World Bank has become increasingly involved in wood-based energy and reforestation and in forest-management projects. Assists translators and researchers who work in this field.

A World Bank Glossary—Glossaire de la Banque mondiale
1984. 48 pages.

Improving Irrigated Agriculture: Institutional Reform and the Small Farmer
Daniel W. Bromley

India: Demand and Supply Prospects for Agriculture
James Q. Harrison, Jon A. Hitchings, and John W. Wall
Stock No. WP-0500. $5.

Irrigation Management in China: A Review of the Literature
James E. Nickum
Analyzes irrigation management in the People's Republic of China. Major topics covered are the institutional environment, the organizational structure, water uses and funding, and water allocation. The report is based on Chinese-language materials published in China and now available in the United States.

Land Reform
Examines the characteristics of land reform, its implications for the economies of developing counties, and the major policy options open to the World Bank in this field.
Stock No. BK 9042. $5 paperback.

Land Tenure Systems and Social Implications of Forestry Development Programs
Michael M. Cernea
Stock No. WP-0452. $3.

Managing Elephant Depredation in Agricultural and Forestry Projects
John Seidensticker
Outlines procedures for managing elephants in and around project areas as part of the project design. Helps project designers plan activities that will protect wildlife and prevent financial loss from damage by animals. Illustrates methods used to investigate elephant behavior and ecology. Notes that careful scheduling of project activities is required to ensure that elephants are not isolated in production areas.
Stock No. BK 0297. $3.

Managing Information for Rural Development: Lessons from Eastern Africa
Guido Deboeck and Bill Kinsey
Stock No. WP-0379. $3.

Measuring Project Impact: Monitoring and Evaluation in the PIDER Rural Development Project—Mexico
Michael M. Cernea
Stock No. WP-0332. $5.

Monitoring and Evaluation of Agriculture and Rural Development Projects
Dennis J. Casley and Denis A. Lury
This book provides a how-to tool for the design and implementation of monitoring and evaluation systems in rural development projects. Because rural development projects are complex, they seek to benefit large numbers of people in remote rural areas, and they involve a variety of investments. The need for monitoring and evaluating them during implementation has been accepted in principle, but effective systems have not heretofore been formulated. The concepts of monitoring and evaluation are differentiated and issues that need to be considered in designing systems to monitor and evaluate specific projects are outlined, emphasizing the timeliness of the monitoring functions for effective management. Elaborates on such technical issues as selection of indicators, selection of survey methodology, data analysis, and presentation. Directed primarily to those working with specific projects and will be useful to project appraisal teams, to designers of monitoring and evaluation systems, and to project staff who work with these systems.
The Johns Hopkins University Press. 198. 145 pages.

Monitoring Rural Development in East Asia
Guido Deboeck and Ronald Ng
Stock No. WP-0439. $3.

Monitoring Systems and Irrigation Management: An Experience from the Philippines
Agricultural economists, planners, and field workers will find this 1983 case study report a practical guide for designing efficient monitoring and evaluation systems for irrigation and similar projects. It illustrates the practical application of the principles covered in the 1982 publication Monitoring and Evaluation of Agriculture and Rural Development Projects. Highlights the problems as well as the successes.
Opportunities for Biological Control of Agricultural Pests in Developing Countries
D. J. Greathed and J. K. Waage
Describes how to use living organisms as pest control agents, either alone or as one component of pest management. Biological control offers hope of long-term—permanent—results, causes no pollution, poses no risk to human health and is often cheaper than chemical controls. Gives methods and costs. Specifies controls for specific crops found in developing countries.

Prices, Taxes, and Subsidies in Pakistan Agriculture, 1960–1976
Carl Gotsch and Gilbert Brown

Rural Development in China
Dwight H. Perkins and Shahid Yusuf
Looks at China’s rural development experience as a whole since 1949. Analyzes China’s agricultural performance and traces it back to the technology and other sources that made that performance possible. Goes beyond the conventional sources of growth analysis to examine the political and organizational means that enabled the Chinese to mobilize so much labor for development purposes. Describes the successes and failures of China’s rural development policy. Helps clarify both the strengths and weaknesses of a self-reliant strategy of rural development.
Stable and Goats in Developing Countries: Their Present and Potential Role

Winrock International Livestock Research and Training Center

Sheep and goats are viewed as an integral component of complex agricultural systems. This comprehensive analysis leads to recommendations on the need for a balanced production system approach for research, training, and development programs. Assesses the role of sheep and goats in food production systems by examining advantages and disadvantages, aid/donor support, constraints on contributions, and overcoming constraints. Emphasizes the need for a combination of support activities and marketing and pricing policies for small ruminants and their products. Reviews ongoing projects.

Stock No. BK 0272. $5.

Sociocultural Aspects of Developing Small-Scale Fisheries: Delivering Services to the Poor

Richard B. Pollinac

Stock No. WP-0490. $3.

Some Aspects of Wheat and Rice Price Policy in India

Raj Krishna and G.S. Raychaudhuri

Stock No. WP 0381. $3.

Sub-Saharan Agriculture: Synthesis and Trade Prospects

Shamsher Singh

Agricultural production, the single most important determinant of overall economic growth, has been sluggish in Sub-Saharan African countries during the past two decades. This overview takes a three-pronged approach to understanding the problems of agricultural production in the 47 countries that make up the region. It outlines domestic and global constraints; summarizes prices, trade, and consumption forecasts for major agricultural exports; and project trends.

Staff Working Paper No. 608. 1983. 172 pages (including more than 75 tables and charts).

A System of Monitoring and Evaluating Agricultural Extension Projects

Michael M. Cernea and Benjamin J. Tepping

Stock No. WP-0272. $5.

Thailand: Case Study of Agricultural Input and Output Pricing

Trent Bertrand

Stock No. WP-0385. $5.

Traditional Land Tenure and Land Use Systems in the Design of Agricultural Projects

Raymond Noronha and Francis J. Lethem

The feasibility of agricultural projects and their intended impact are often determined by traditional patterns of tenure and land use. This paper provides agricultural project designers with an analytical basis and rationale for examining systems and suggests how to use such information in designing projects.

Training and Visit Extension

Daniel Benor and Michael Baxter

Contains a comprehensive explanation of the organization and operation of the training and visit system of agricultural extension. Emphasizes simplicity and decisiveness. Defines organization and mode of operation and allows continuous feedback from farmers to extension and research workers. This method has been adopted in some 40 countries in Asia, Africa, Europe, and Central and South America. Useful to extension staff at all levels, agricultural research personnel, trainers, and staff of agricultural organizations, as well as universities and training institutions involved in agricultural and rural development and public administration.

Women and the Subsistence Sector: Economic Participation and Households in Nepal

Meena Acharya and Lynn Bennett

Fascinating analysis of the complex social, demographic, and economic factors that affect women's decisionmaking role in the subsistence sector. Data collected from seven villages show women play a major role in agricultural production, both as laborers and managers. Bringing women into the market economy would make better use of local resources and improve their status and economic security in Nepal.

SEND TO: YOUR LOCAL DISTRIBUTOR OR TO WORLD BANK PUBLICATIONS
(See the other side of this form.)

P.O. BOX 37525
WASHINGTON, D.C. 20013 U.S.A.

Date ____________________

Name ____________________ Ship to: (Enter if different from purchaser)

Title ____________________ Name ____________________

Firm ____________________ Title ____________________

Address ____________________ Firm ____________________

City ______ State ______ Postal Code ______ Address ______

Country ______ Telephone (_____) ______ City ______ State ______ Postal Code ______

Purchaser Reference No. ____________________ Country ______ Telephone (_____) ______

Check your method of payment.
Enclosed is my □ Check □ International Money Order □ Unesco Coupons □ International Postal Coupon.
Make payable to World Bank Publications for U.S. dollars unless you are ordering from your local distributor.

Charge my □ VISA □ MasterCard □ American Express □ Choice. (Credit cards accepted only for orders addressed to World Bank Publications.)

Credit Card Account Number ____________________ Expiration Date ____________ Signature ____________

□ Invoice me and please reference my Purchase Order No. ____________

Please ship me the items listed below.

<table>
<thead>
<tr>
<th>Stock Number</th>
<th>Author/Title</th>
<th>Customer Internal Routing Code</th>
<th>Quantity</th>
<th>Unit Price</th>
<th>Total Amount $</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All prices subject to change. Prices may vary by country. Allow 6—8 weeks for delivery.

Subtotal Cost ____________

Total copies ____________ Air mail surcharge if desired ($2.00 each) ____________

Postage and handling for more than two complimentary items ($2.00 each) ____________

Total ____________

Thank you for your order.
Distributors of World Bank Publications

ARGENTINA
Carlos Hirsch, SRL
Attn: Ms. Monica Bustos
Florida 165 4° piso
Galera Guemes
Buenos Aires 1307

AUSTRALIA, PAPUA NEW GUINEA, FIJI, SOLOMON ISLANDS, WESTERN SAMOA, AND VANUATU
The Australian Financial Review
Attn: Mr. J.M. Hernandez
Distributors of World ~Pt.
Indira Limited
Castello 37
Jakarta Pusat

BELGIUM
Publications des Nations Unies
Attn: Mr. Jean de Lannoy
av du Roi 202
1060 Brussels

CANADA
Le Diffuseur
Attn: Mrs. Suzanne Vermette
C.P. 85, Boucherville J4B 5E6
Quebec

COSTA RICA
Liberia Tejoes
Attn: Mr. Hugo Chamberlain
Calle 11-13, Av. Fernandez Guell
San Jose

DENMARK
Sanfunds litteratur
Attn: Mr. Wilfried Roloff
Rosendem Alle 11
DK-1970 Copenhagen V.

EGYPT, ARAB REPUBLIC OF
Attn: Al Ahram
Al Galaa Street
Cairo

FINLAND
Akateeminen Kirjakauppa
Attn: Mr. Sayed El-Gabri
Al Galaa Street
Helsinki 10

FRANCE
World Bank Publications
66, avenue d’Iena
75116 Paris

GERMANY, FEDERAL REPUBLIC OF
UNO-Verlag
Attn: Mrs. Gisela Krause
Simrockstrasse 23
D-5300 Bonn 1

HONG KONG, MACAU
Asia 2000 Ltd.
Attn: Ms. Gretchen Wearing Smith
6 Fl., 146 Prince Edward Road
Kowloon

INDIA
UBS Publishers’ Distributors Ltd.
Attn: Mr. D.P. Veer
5 Ansari Road, Post Box 7015
New Delhi 110002
(Branch offices in Bombay, Bangalore, Kanpur, Calcutta, and Madras)

INDONESIA
Pt. Indira Limited
Attn: Mr. Bambang Wahyudi
Jl. Dr. Sam Ratulangi No. 37
Jakarta Pusat

IRELAND
TDC Publishers
Attn: Mr. James Booth
12 North Frederick Street
Dublin 1

JAPAN
Eastern Book Service
Attn: Mr. Teruma Hirano
37-3, Hongo 3-Chome, Bunkyo-ku 113
Tokyo

KENYA
Africa Book Services (E.A.) Ltd.
Attn: Mr. M.B. Dar
P.O. Box 45245
Nairobi

KOREA, REPUBLIC OF
Pan Korea Book Corporation
Attn: Mr. Yoon-Sun Kim
P.O. Box 101, Kwangwanmun
Seoul

MALAYSIA
University of Malaya Cooperative
Bookshop Ltd.
Attn: Mr. Mohammed Fahim Htj Yacob
P.O. Box 1127, Jalan Pantai Baru
Kuala Lumpur

MEXICO
INFOTEC
Attn: Mr. Jorge Cepeda
San Lorenzo 153-11, Col. del Valle, Deleg. Benito Juarez
03100 Mexico, D.F.

NETHERLANDS
MBE BV
Attn: Mr. Gerhard van Bussell
Noorderwal 38, 7241 BL Lochem

NORWAY
Johan Grundt Tanum A.S.
Attn: Ms. Randi Mikkelborg
P.O. Box 1177 Sentrum
Oslo 1

PAKISTAN
Ediciones Libreria Cultural Panamena
Attn: Mr. Luis Fernandez Fraguera R.
Av. 7, Espana 16
Panama Zone 1

PHILIPPINES
National Book Store
Attn: Mrs. Socorro C. Ramos
701 Rizal Avenue
Manila

SAUDI ARABIA
Jarir Book Store
Attn: Mr. Akram Al-Agil
P.O. Box 3196
Riyadh

SINGAPORE, TAIWAN, BURMA
Information Publications Private, Ltd.
Attn: Ms. Janet David
20-06 1st Floor, Pei-Fu Industrial
Building 24 New Industrial Road
Singapore

SPAIN
Mundi-Prensa Libros, S.A.
Attn: Mr. J.M. Hernandez
Castello 37
Madrid

SRI LANKA AND THE MALDIVES
Lake House Bookshop
Attn: Mr. Victor Walatara
41 Wad Ramanyake Mawatha
Colombo 2

SWEDEN
ABCE Fritznes Kungl, Hovbokhandel
Attn: Mr. Eide Segerback
Regeringsgatan 12, Box 16356
S-103 27 Stockholm

SWITZERLAND
Librairie Payot
Attn: Mr. Henri de Perrot
Attn: Mr. David Jamieson
Africa Book Services (E.A.) Ltd.
6, rue Grenus
235-243 Jones Street
Attn: Mr. M.B. Dar
1211 Geneva

TANZANIA
Various offices
Attn: Mrs. Ratana
308 Silom Road
Bangkok

UNITED KINGDOM AND NORTHERN IRELAND
Microinfo Ltd.
Attn: Mr. Roy Selwyn
Newman Lane, P.O. Box 3
Alston, Hampshire GU34 2PG
England

UNITED STATES
The World Bank Book Store
600 19th Street, N.W.
Washington, D.C. 20433
(Postal address: P.O. Box 37525
Washington, D.C. 20001, U.S.A.)

Baker and Taylor Company
501 South Gladiola Avenue
Memphis, Illinois, 60954

380 Edison Way
Reno, Nevada, 89564

50 Kirby Avenue
Somerville, New Jersey, 08876

Commerce, Georgia 30599

Bernan Associates
9730-E George Palmer Highway
Lanham, Maryland, 20761

Blackwell North America, Inc.
1001 Fries Mill Road
Blackwood, New Jersey 08012

Sidney Kramer Books
1722 F Street, N.W.
Washington, D.C. 20006

United Nations Bookshop
United Nations Plaza
New York, N.Y. 10017

VENEZUELA
Libereria del Este
Attn: Mr. Juan Pericas
Avda Francisco de Miranda, no. 52
Edificio Galipan, Aptdo. 60.337
Caracas 1060-A
ASPECTS OF THE TRAINING AND VISIT SYSTEM OF