Comparative assessment of maize, finger millet and sorghum for household food security in the face of increasing climatic risk

Rurinda, J. and Mapfumo, P. and van Wijk, M.T. and et al, . (2014) Comparative assessment of maize, finger millet and sorghum for household food security in the face of increasing climatic risk. European Journal of Agronomy, 55. pp. 29-41.

[img] PDF - Published Version
Restricted to ICRISAT researchers only


Questions as to which crop to grow, where, when and with what management, will be increasingly challenging for farmers in the face of a changing climate. The objective of this study was to evaluate emergence, yield and financial benefits of maize, finger millet and sorghum, planted at different dates and managed with variable soil nutrient inputs in order to develop adaptation options for stabilizing food production and income for smallholder households in the face of climate change and variability. Field experiments with maize, finger millet and sorghum were conducted in farmers’ fields in Makoni and Hwedza districts in eastern Zimbabwe for three seasons: 2009/10, 2010/11 and 2011/12. Three fertilization rates: high (90 kg N ha−1, 26 kg P ha−1, 7 t ha−1 manure), low (35 kg N ha−1, 14 kg P ha−1, 3 t ha−1 manure) and a control (zero fertilization); and three planting dates: early, normal and late, were compared. Crop emergence for the unfertilized finger millet and sorghum was <15% compared with >70% for the fertilized treatments. In contrast, the emergence for maize (a medium-maturity hybrid cultivar, SC635), was >80% regardless of the amount of fertilizer applied. Maize yield was greater than that of finger millet and sorghum, also in the season (2010/11) which had poor rainfall distribution. Maize yielded 5.4 t ha−1 compared with 3.1 t ha−1 for finger millet and 3.3 t ha−1 for sorghum for the early plantings in the 2009/10 rainfall season in Makoni, a site with relatively fertile soils. In the poorer 2010/11 season, early planted maize yielded 2.4 t ha−1, against 1.6 t ha−1 for finger millet and 0.4 t ha−1 for sorghum in Makoni. Similar yield trends were observed on the nutrient-depleted soils in Hwedza, although yields were less than those observed in Makoni. All crops yielded significantly more with increasing rates of fertilization when planting was done early or in what farmers considered the ‘normal window’. Crops planted early or during the normal planting window gave comparable yields that were greater than yields of late-planted crops. Water productivity for each crop planted early or during the normal window increased with increase in the amount of fertilizer applied, but differed between crop type. Maize had the highest water productivity (8.0 kg dry matter mm−1 ha−1) followed by sorghum (4.9 kg mm−1 ha−1) and then finger millet (4.6 kg mm−1 ha−1) when a high fertilizer rate was applied to the early-planted crop. Marginal rates of return for maize production were greater for the high fertilization rate (>50%) than for the low rate (<50%). However, the financial returns for finger millet were more attractive for the low fertilization rate (>100%) than for the high rate (<100%). Although maize yield was greater compared with finger millet, the latter had a higher content of calcium and can be stored for up to five years. The superiority of maize, in terms of yields, over finger millet and sorghum, suggests that the recommendation to substitute maize with small grains may not be a robust option for adaptation to increased temperatures and more frequent droughts likely to be experienced in Zimbabwe and other parts of southern Africa.

Item Type: Article
Uncontrolled Keywords: Climate change adaptation; Crop diversification; Planting date; Climate variability; Nutrient management
Author Affiliation: Plant Production Systems, Wageningen University, P.O. Box 430, 6700AK Wageningen, The Netherlands
Subjects: Atmosperic Science > Climatology
Postharvest Management > Food Technology
Divisions: Maize
Depositing User: Ms Ishrath Durafsha
Date Deposited: 07 Feb 2014 08:38
Last Modified: 07 Feb 2014 08:38
Official URL:

Actions (login required)

View Item View Item