IRON-CHELATING ACTIVITY OF CHICKPEA PROTEIN HYDROLYSATE PEPTIDES

Cristina Torres-Fuentes, Manuel Alaiz and Javier Vioque*

Instituto de la Grasa (C.S.I.C). Avda. Padre García Tejero 4, 41012-Sevilla, SPAIN.

*Corresponding author:
Tel. 954611550
Fax. 954616790
e-mail: jvioque@ig.csic.es
ABSTRACT

Chickpea-chelating peptides were purified and analyzed for their iron-chelating activity. These peptides were purified after affinity and gel filtration chromatography from a chickpea protein hydrolysate produced with pepsin and pancreatin. Iron-chelating activity was higher in purified peptide fractions than in the original hydrolysate. Histidine contents were positively correlated with the iron-chelating activity. Hence fractions with histidine contents above 20% showed the highest chelating activity. These results show that iron-chelating peptides are generated after chickpea protein hydrolysis with pepsin plus pancreatin. These peptides, through metal chelation, may increase iron solubility and bioavailability and improve iron absorption.

Keywords: Chelating peptides; Chickpea; Iron; Protein hydrolysates; Pepsin; Pancreatin.
1. Introduction

Iron is an essential element in human nutrition. It participates in many biochemical processes, including electron transfer reactions, gene regulation, binding and transport of oxygen, and cell growth and differentiation. Iron deficiency may lead to diseases, such as anemia, glossitis, angular stomatitis, koilonychia, blue sclera, and esophageal webbing. Other physiological manifestations of iron deficiency include pregnancy complications, pica, increased absorption of lead and cadmium, alteration in drug metabolism, increased insulin sensitivity and impaired immune and mental function, physical performance and thermoregulation (Beard, 2001). Also, iron may generate reactive oxygen species (ROS) and be implicated in cardiovascular and neurological diseases, such as atherosclerosis, and Alzheimer’s and Parkinson’s diseases (Blat, Weiner, Youdim, & Fridkin, 2008). Also, ROS may have a negative impact on flavour, texture, nutritive value and shelf life of food products (Chung, Chang, Chao, Ching-Fwu, & Su-Tze, 2002). Thus, chelating agents that decrease free iron and favour iron bioavailability may possess therapeutic potential and prevent its pro-oxidant effects.

Some dietary compounds, such as reducing components, stearic acid, certain amino acids (His, Glu, Asp, and Cys), peptides released during proteolytic digestion and the so called “meat factor”, enhance iron absorption (Swain, Tabatabai, & Reddy, 2002). These compounds may bind iron, forming soluble complexes and improving iron bioavailability (Glahn, & Van Campen, 1997; Storcksdieck, Bonsmann, & Hurrel, 2007). Also, amino acids and certain
other organic acids, increase iron absorption by buffering the pH of the intestinal contents (Van Campen, & Gross, 1969).

Different studies have shown the beneficial effect on iron absorption of peptides produced by enzymatic hydrolysis of vegetable proteins, such as soybean (Murray-Kolb, Welch, Theil, & Beard, 2003; Macfarlane et al, 1990; Baynes et al., 1990; Fidler, Davidsson, Walczyk, & Hurrell, 2003). Also, beef peptide fractions, purified by copper affinity chromatography, increase iron solubility, indicating that copper-chelating peptides also possess affinity for iron (Swain et al., 2002). Also, copper has been used as a ligand to purify lactoferrin, an iron-binding protein (Lönnerdal, Carlsson, & Porath, 1977).

In a previous work, we have purified, by metal affinity chromatography, copper-chelating peptides from a chickpea protein hydrolysate produced with pepsin plus pancreatin (Torres-Fuentes, Alaiz, & Vioque, 2011). The objective of the present work was to determine if chickpea copper-chelating peptides also possessed iron-chelating activity that may be of interest from a nutritional point of view.

2. Materials and methods

2.1. Chemicals

Diethyl ethoxymethylenemalonate was purchased from Fluka (Buchs, Switzerland). Amino acid standards, D,L-α-aminobutyric acid, trinitrobenzenesulphonic acid (TNBS), ethylenediamine tetra-acetic acid (EDTA), enzyme complexes of pepsin, pancreatin and [4,4’-[3-(2-pyridinyl)-1,2,4-triazine-5,6-diyl] bisbenzenesulfonic acid] (ferroxine) were provided by Sigma-Aldrich.

2.2. Purification of chickpea-chelating peptides
Chelating peptides were purified as previously described (Torres-Fuentes et al., 2011). Chickpea protein isolates were hydrolyzed with the digestives enzymes pepsin and pancreatin. Then, chelating peptide fractions were purified from this hydrolysate by metal affinity chromatography, using immobilized copper, and chelating peptides were further fractionated by gel filtration chromatography (Figure 1).

2.3. Amino acid analysis

Amino acids were determined after derivatization with diethyl ethoxymethylene malonate by HPLC, using D,L-α-aminobutyric acid as an internal standard (Alaiz, Navarro, Girón, & Vioque, 1992). The HPLC system consisted of a model 600E multisystem with a 484 UV-vis detector (Waters Corporation, Milford, MA, EEUU) equipped with a 300 mm _ 3.9 mm i.d. reversed-phase column (Novapack C18, 4 m; Waters). A binary gradient was used for elution with a flow of 0.9 ml/min. The solvents used were (A) sodium acetate (25 mM), containing sodium azide (0.02% w/v), pH 6.0, and (B) acetonitrile. Elution was as follows: time, 0.0-3.0 min; linear gradient from A/B (91/9) to A/B (86/14); 3.0-13.0 min, elution with A/B (86/14); 13.0- 30.0 min, linear gradient from A/B (86:14) to A/B (69/31); and 30.0- 35.0 min, elution with A/B (69/31). The column was maintained at 18 °C. Derivatized amino acids were detected at 280 nm.

2.4. Determination of iron-chelating activity

Fe²⁺-chelating activity was determined by measuring the formation of the Fe^{2+}-ferrozine complex (Carter, 1971). Samples (100 μg) were mixed with 250 μl of
100 mM Na acetate buffer, pH 4.9, and 30 μl of FeCl₂ (0.01%, w/v). Ferrozine (12.5 μl, 40 mM) was added after incubation for 30 min at room temperature. EDTA was used as a positive control. Binding of Fe(II) ions to ferrozine generates a coloured complex that was measured at 562 nm, using a microplate reader (Multiskan Spectrum, ThermoLab Systems, MA, USA).

Iron-chelating activity was calculated as:

\[
\% \text{ Chelating Activity} = \left[\frac{(\text{Abs} \text{ control} - \text{Abs} \text{ sample} / \text{Abs} \text{ control})}{\text{Abs} \text{ control}} \right] \times 100
\]

3. Results and discussion

In a previous work (Torres-Fuentes et al., 2011), we have described the purification of chickpea copper-chelating peptides. The purification process is shown in Figure 1. A chickpea protein isolate was hydrolyzed sequentially with the digestive enzymes, pepsin and pancreatin. The resulting protein hydrolysate was used for the purification of chelating peptides. These peptides were purified by affinity chromatography, with immobilized copper, plus gel filtration chromatography. Fifteen chickpea-chelating peptide fractions were obtained.

Iron is a transition metal with characteristics similar to those of copper, and therefore, previously purified copper-chelating peptides may, as well, possess iron-chelating activity. To test this hypothesis, iron-chelating activity of purified peptide fractions was studied. Figure 2 shows the iron-chelating activity of the original chickpea protein hydrolysate, chickpea peptide fractions (F1, F2 and F3), purified after copper affinity chromatography, and EDTA. F1, F2 and F3 fractions showed higher iron-chelating activity than did the protein hydrolysate. Contrary to the observations with copper (Torres-Fuentes et al., 2011), no
correlation between the histidine contents and the iron-chelating activity was observed in these fractions. Thus, fraction F1 showed the highest iron-chelating activity, 4.5-fold higher than that observed in the protein hydrolysate, and 1.8-fold higher than the activity of fractions F2 and F3. However, F1 had a lower histidine content than had F2 and F3, although being very rich in arginine and lysine (24.9 and 11.7 %, respectively). These are polar amino acids that may also be implicated in the high iron-binding capacity observed for this fraction (Berner, & Miller, 1985; Van Campen, 1973).

F1, F2 and F3 peptide fractions were further fractioned by gel filtration chromatography in fifteen subfractions. Iron-chelating activity of these subfractions was analyzed and compared with that of the chickpea protein hydrolysate and EDTA (Figure 3). A range of different iron-chelating activities was observed that depends on peptide sizes, amino acid compositions, and sequences of peptides in these subfractions. Subfractions purified from fractions F2 and F3 showed the highest iron-chelating activity, between 11 and 17-fold higher than the chelating activity of the protein hydrolysate (Figure 3). In general subfractions with the highest iron-chelating activity also possessed the highest copper-chelating activity (Torres-Fuentes et al., 2011). Thus, in fraction F1, F1D showed the highest iron- and copper-chelating activities. In the same way, subfractions F2C and F2D among F2 subfractions, and F3D and F3E among F3 subfractions, showed the highest iron- and copper-chelating activities. Hence a positive correlation \((R^2 = 0.65) \) was observed between the iron- and copper-chelating activities of all purified subfractions. Small differences in the chelating of Fe or Cu by purified peptides may be attributed to small chemical and physical differences between these two metals, excluding
the oxidation state, that is the same for both. The atomic radius (1.26 Å for iron and 1.28 Å for copper) can be considered as a factor that may also influence their binding to peptides.

Also a positive correlation ($R^2 = 0.67$), between histidine contents and iron-chelating activity, was observed in purified subfractions (Figure 4A). On the other hand, there was no correlation between the iron-chelating activity and peptide size of these subfractions (Figure 4B). In general, smaller subfractions, below 500 Da (full points, Figure 4B), had higher iron-chelating activities than had subfractions above 500 Da (open points, Figure 4B). Hence, the most active subfractions were F2D, F3D, F2C and F3E. However, F1D showed high activity although its histidine content was lower (8% His and 296 Da). This may be due to the high arginine and lysine contents, as observed in the parent fraction F1. As previously reported for the copper-chelating activity, a combination of high histidine contents, between 20 % and 30 %, and small peptide size provides the best chelating activities.

Cysteine has been recognized as an important amino acid in the generation of iron chelates, especially when derived from meat protein digestion (Glahn et al., 1997; Martínez-Torres, Romano, & Layrisse, 1981; Taylor, Martínez-Torres, Romano, & Layrisse, 1986). However in chickpea-chelating peptides, no correlation was observed between cysteine contents and iron chelation.

In conclusion, previously purified chickpea copper-chelating peptides also showed iron-chelating activity, although iron-chelating activity was higher than copper-chelating activity for the same amounts of peptides assayed. The main determinant in iron-chelating activity was the histidine contents. Hence, the
most active fractions were those with histidine levels above 20 %. The peptide size was not a determinant in the activity although, in general, smaller fractions were more active than were larger fractions. Hence, chelating peptides generated during chickpea protein digestion with pepsin plus pancreatin may be of interest as chelating agents that may improve iron absorption. Thus, these peptides may facilitate the conversion of ferric iron to ferrous, that subsequently enters enterocytes through the DMT1 receptor. Also, peptides with bound iron may enter enterocytes through a peptide transporter localized in the brush border membranes. Iron-chelating activity may also prevent the production of reactive oxygen species, generated in Fenton reactions where iron is implicated. Hence, chickpea iron-chelating peptides may be useful in the food industry to produce fortified food, thus maintaining food quality and appearance. Also, chickpea-chelating peptides may be useful, as well, for the chelation of very important other minerals, in human nutrition, such as calcium or zinc.

Acknowledgments

This work was supported by the Spanish Ministry of Innovation and Science through Research project AGL2007-63580. Thanks are due to María Dolores García-Contreras for technical assistance.
References

FIGURE LEGENDS

Figure 1 Schematic diagram of the purification process of chickpea iron-chelating peptides

Figure 2 Iron-chelating activity of (100 g) EDTA, chickpea protein hydrolysate and peptide chelating fractions F1, F2 and F3. Data correspond to the average ± SD of two independent experiments

Figure 3 Iron-chelating activity of (30 g) EDTA, chickpea protein hydrolysate and chelating peptide fractions purified by gel filtration chromatography. Data correspond to the average ± SD of two independent experiments

Figure 4 Correlation of iron-chelating activity of chickpea-chelating peptide subfractions with their His content (A) and peptide size (B)
Figure 1

Chickpea Protein Isolate

Pepsin

Pancreatin

Chickpea Protein Hydrolysate

Affinity Chromatography

Chickpea-chelating Peptide Fractions

F1 F2 F3

Gel Filtration Chromatography

Chickpea-chelating Peptide Subfractions

F1A F2A F3A

F1B F2B F3B

F1C F2C F3C

F1D F2D F3D

F1E F3E

F1F
Figure 2

Iron chelating activity (%)
Figure 3

Iron chelating activity (%)

EDTA PH F1A F1B F1C F1D F1E F1F F2A F2B F2C F2D F3A F3B F3C F3D F3E
Figure 4
Highlights.

Chickpea protein hydrolysates produced with pepsin and pancreatin contain iron chelating peptides. A positive correlation between histidine contents and iron chelating activity was observed. These peptides may be useful in increasing iron solubility and bioavailability.