Identification and profiling of salinity stress-responsive proteins in Sorghum bicolor seedlings

Ngara, R. and Ndimba, R. and Borch-Jensen, J. and et al, . (2012) Identification and profiling of salinity stress-responsive proteins in Sorghum bicolor seedlings. Journal of Proteomics. 12 p..

[img] PDF (Article in Press) - Accepted Version
Restricted to ICRISAT researchers only


Sorghum bicolor, a drought tolerant cereal crop, is not only an important food source in the semi arid/arid regions but also a potential model for studying and gaining a better understanding of the molecular mechanisms of drought and salt stress tolerance in cereals. In this study, seeds of a sweet sorghumvariety, MN1618, were planted and grown on solid MS growth medium with or without 100mM NaCl. Heat shock protein expression immunoblot- ting assays demonstrated that this salt treatment induced stress within natural physiological parameters for our experimental material. 2D PAGE in combination with MS/MS proteomics techniques were used to separate, visualise and identify salinity stress responsive proteins in young sorghum leaves. Out of 281 Coomassie stainable spots, 118 showed statistically significant responses (p<0.05) to salt stress treatments. Of the 118 spots, 79 were selected for tandem mass spectrometric identification, owing to their good resolution and abundance levels, and of these, 55 were positively identified. Identified proteins were divided into six functional categories including both known and novel/putative stress responsive proteins. Molecular and physiological functions of some of our proteins of interest are currently under investigation via bioinformatic and molecular biology approaches.

Item Type: Article
Additional Information: The authors are grateful to Professor Antoni Slabas and Dr William Simon of Durham University for preliminary tandem mass spectrometric identification of the spots, which were further confirmed here. The National Research Foundation and the Department of Science and Technology of South Africa funded this work. The authors declare no conflict of interest.
Uncontrolled Keywords: Sweet sorghum, MN1618, Salinity stress, MALDI-TOF/TOF, Mass spectrometry, Biofuels
Author Affiliation: Proteomics Research Group, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa
Subjects: Plant Protection
Divisions: Sorghum
Depositing User: Mr Siva Shankar
Date Deposited: 20 Jun 2012 07:54
Last Modified: 20 Jun 2012 07:54

Actions (login required)

View Item View Item